Practical Quantum Computers Advances at Google, Intel, and several research groups indicate that computers with previously unimaginable power are finally within reach.
One of the labs at QuTech, a Dutch research institute, is responsible for some of the world’s most advanced work on quantum computing, but it looks like an HVAC testing facility. Tucked away in a quiet corner of the applied sciences building at Delft University of Technology, the space is devoid of people. Buzzing with resonant waves as if occupied by a swarm of electric katydids, it is cluttered by tangles of insulated tubes, wires, and control hardware erupting from big blue cylinders on three and four legs.
Inside the blue cylinders—essentially supercharged refrigerators—spooky quantum-mechanical things are happening where nanowires, semiconductors, and superconductors meet at just a hair above absolute zero. It’s here, down at the limits of physics, that solid materials give rise to so-called quasiparticles, whose unusual behavior gives them the potential to serve as the key components of quantum computers. And this lab in particular has taken big steps toward finally bringing those computers to fruition. In a few years they could rewrite encryption, materials science, pharmaceutical research, and artificial intelligence.
Every year quantum computing comes up as a candidate for this Breakthrough Technologies list, and every year we reach the same conclusion: not yet. Indeed, for years qubits and quantum computers existed mainly on paper, or in fragile experiments to determine their feasibility. (The Canadian company D-Wave Systems has been selling machines it calls quantum computers for a while, using a specialized technology called quantum annealing. The approach, skeptics say, is at best applicable to a very constrained set of computations and might offer no speed advantage over classical systems.) This year, however, a raft of previously theoretical designs are actually being built. Also new this year is the increased availability of corporate funding—from Google, IBM, Intel, and Microsoft, among others—for both research and the development of assorted technologies needed to actually build a working machine: microelectronics, complex circuits, and control software.
The project at Delft, led by Leo Kouwenhoven, a professor who was recently hired by Microsoft, aims to overcome one of the most long-standing obstacles to building quantum computers: the fact that qubits, the basic units of quantum information, are extremely susceptible to noise and therefore error. For qubits to be useful, they must achieve both quantum superposition (a property something like being in two physical states simultaneously) and entanglement (a phenomenon where pairs of qubits are linked so that what happens to one can instantly affect the other, even when they’re physically separated). These delicate conditions are easily upset by the slightest disturbance, like vibrations or fluctuating electric fields.
Kouwenhoven’s work relies on manipulating unique quasiparticles that weren’t even discovered until 2012. And it’s just one of several impressive steps being taken. In the same lab, Lieven Vandersypen, backed by Intel, is showing how quantum circuits can be manufactured on traditional silicon wafers.




At the heart of quantum computing is the quantum bit, or qubit, a basic unit of information analogous to the 0s and 1s represented by transistors in your computer. Qubits have much more power than classical bits because of two unique properties: they can represent both 1 and 0 at the same time, and they can affect other qubits via a phenomenon known as quantum entanglement. That lets quantum computers take shortcuts to the right answers in certain types of calculations.
Practical Quantum Computers
- Breakthrough The fabrication of stable qubits, the basic unit of quantum computers.
- Why it Matters Quantum computers could be exponentially faster at running artificial-intelligence programs and handling complex simulations and scheduling problems. They could even create uncrackable encryption.
-
Key Players
- QuTech
- Intel
- Microsoft
- Google
- IBM - Availability 4-5 years
All the academic and corporate quantum researchers I spoke with agreed that somewhere between 30 and 100 qubits—particularly qubits stable enough to perform a wide range of computations for longer durations—is where quantum computers start to have commercial value. And as soon as two to five years from now, such systems are likely to be for sale. Eventually, expect 100,000-qubit systems, which will disrupt the materials, chemistry, and drug industries by making accurate molecular-scale models possible for the discovery of new materials and drugs. And a million-physical-qubit system, whose general computing applications are still difficult to even fathom? It’s conceivable, says Neven, “on the inside of 10 years.”
Comments
Post a Comment